July 19, 2016--Colorado River: Berkeley Lab to lead the watershed function scientific focus area (Coyote Gulch)

Berkeley Lab will lead the Watershed Function Scientific Focus Area (SFA) to quantify how perturbations to mountainous watershed—floods, drought, fire and early snowmelt—impact the downstream delivery of water, nutrients, carbon, and metals. Researchers will observe and model watershed response to perturbations over seasonal to decadal timeframes, and from genome to watershed scales. The Department of Energy (DOE) Office of Biological and Environmental Research greenlighted the Watershed Function SFA earlier this week. DOE will fund the project at over $20 million for three years. The SFA’s research site is the mountainous East River watershed in the Upper Colorado River Basin. Mountainous watersheds are recognized as the ‘water towers’ of the Earth. The Upper Colorado is perhaps the most important basin in the Western U.S.—it supplies water to more than one in ten Americans, irrigation water and nutrients to more than 5.5 million acres of land, and more than 4,200 megawatts of hydroelectric power. The East River mountainous headwaters catchment provides an ideal testbed for the team to discover and predict water and biogeochemical cycles, and how disturbances influence downstream water discharge, carbon cycles, and nutrient delivery.

“The East River catchment represents an incredible natural laboratory for pursuing research that links climate, hydrology, biogeochemistry and vegetation, with the site constituting an exciting new “community watershed” for DOE, Berkeley Lab, and their collaborating institutions,” says deputy lead Ken Williams. “The project will develop the first ever scale-adaptive approach that will enable scientists to zoom into a watershed, simulating microbially mediated and other fine-scale processes only when and where that information is needed to accurately predict watershed behavior,” says Susan Hubbard, SFA lead. “Capabilities to predict the multi-scale response of watersheds respond to extreme weather, land use change, and climate change are not currently available, but are increasingly needed as resource managers strive to optimize hydropower, agriculture, water quality, and water resources over seasonal to annual timescales. This project will tackle that gap by developing modeling capabilities, observational tools, and deep insights about how vulnerable mountainous watersheds respond to increasingly common perturbations.” To view the full article visit the Coyote Gulch.