October 2, 2014--Climate change could increase global fresh water: MIT (Climate Central)

Water stress — the general scarcity of freshwater for people who need it — is considered by many scientists as one of the biggest challenges facing humanity and struggling ecosystems in a world increasingly affected by climate change. Studies differ on how much the world’s growing population will be affected by the growing difficulty of finding freshwater, but a new report by researchers at the Massachusetts Institute of Technology have found that climate change could actually provide more water to people in some parts of the globe while reducing freshwater for other areas. Global warming may increase the overall amount of freshwater flowing in rivers worldwide by about 15 percent, easing water scarcity in many places, including the U.S. Midwest, according to MIT’s Energy and Climate Outlook 2014, released Monday. By the end of the century, during which time greenhouse gas emissions could double globally, the MIT outlook projects that water scarcity could also ease in Mexico, Saudi Arabia, Libya, China and Western Europe. In other places, water stress could worsen, especially in the U.S. Southwest, Pakistan, Turkey, South Africa and parts of North Africa. “All climate models predict a speedup of the hydrological cycle with warmer temperatures,” said the study’s lead author, John Reilly, co-director of the Joint Program on the Science and Policy of Global Change at MIT’s Center for Environmental Policy Research. “That means faster evaporation, more moisture in the atmosphere and more rainfall.” MIT researchers project that while more moisture in the atmosphere will increase freshwater flow 15 percent globally by the end of the century, consumption of freshwater for all human uses worldwide is expected to increase 19 percent, including water for industrial, domestic and agricultural uses. Of those uses, the outlook shows that domestic freshwater consumption could double from 348 billion cubic meters in 2010 to 698 billion cubic meters in 2100, and industrial use of water could increase from 763 billion cubic meters to 1,098 billion cubic meters, or about 45 percent. Irrigation use is projected to decline slightly worldwide.

To view the full article visit the Climate Central. For a copy of the original article stop by or write the Water Information Program at 841 East Second Avenue, Durango, CO 81301 or call (970) 247-1302.